
A Method For Numerical Integration 
By C. B. Haselgrove 

1. Introduction. In this paper we shall give an account of some methods de- 
veloped for the numerical evaluation of multidimensional integrals. These methods 
are based on the theory of Diophantine approximation. They are suitable for some 
problems for which the Monte Carlo method is commonly used and, like the Monte 
Carlo method, are well fitted for use with an electronic digital computer. We shall 
show, however, that they are superior to the Monte Carlo method provided that 
the integrand satisfies certain conditions. We shall also show that they are superior, 
for integrals in space of several dimensions, to formulas typified by those of Gauss 
and Simpson; they may be superior even to certain new integration formulas 
specially constructed for the evaluation of multiple integrals (see for example 
Hammer [2], who gives a bibliography, and Miller [5], [6], [7]). 

The method of antithetic variates which is described by Hammersley and others 
[3], [4] may be used to obtain better estimates than the Monte Carlo method but 
the author thinks that the method described in the present paper is simpler to apply 
and gives better results. 

Various authors have suggested methods which are particular cases of those 
described in this paper but without the underlying theory. See for example Davis 
and Rabinowitz [1]. 

In this section we shall give a short account of the behavior of the error in the 
Monte Carlo method and the direct-product Gauss-type methods so that we can 
compare these with the errors of the new methods. We shall not give an account of 
the method of antithetic variates. 

Suppose that we wish to estimate the integral 

Iff..ffx*-x-.. f(xx *-xk)ldx2 ..*dxk. 

We shall denote the vector (x1, x2, * *, Xk) by x. Numerical methods for the 
evaluation of I involve the calculation of f(x) at a number N of points xi. The 
most desirable of such methods for use on an electronic computer are those which 
require the evaluation of f(x) at the smallest number of points xi in order to obtain 
an estimate with a sufficiently small error. 

The Monte Carlo method gives as an estimate for I the sum 

iN 
- Z f(x)y 

where the points xi are chosen at random in the range of integration. The error 
of such an estimate has standard deviation O(N"12) provided that the function 
f(x) satisfies certain conditions. It is sufficient that the function be bounded. 

A Gauss-type formula for a one-dimensional integral takes the form 
a+h v 

j (y) dy = h ci g(a + aih) + R. 
a i=1 
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The remainder R is O(h2') as h varies for functions q(y) satisfying certain condi- 
tions. We may estimate the integral 

al+h ra2+h rak+h 

f?hf? fahf(x) dxi dx2 dxk 
a 1 a2 k 

by applying the formula in each dimension, obtaining the direct product estimate 
v v 

h E Cil . * . Cikf(al + ailh, ... , ak + a ikh). 
i1 ik=l 

This gives the value of the integral with an error which is 0 (hk +2 v-) as h varies, 
provided that the function f(x) possesses partial derivatives of order up to 2v with 
respect to each variable and that these derivatives are bounded. These conditions 
are very strong in that f(x) must have the derivative 

a2vkf 

aX2vax2v ... aXv 

but they are probably more than is necessary. 
If we divide the hypercube 0 ? x; < 1 into nk smaller cubes with side h = 1/n, 

then using the v-point Gauss formula we obtain a formula for I which requires 
N = (vn )k values of f(x). This gives the value of I with an error which is 

O(n 2v+l) = ? (N ) 

for fixed v and k. Thus if 2v - 1 < 1k, v and k being fixed, the error will not de- 
crease as N increases so rapidly as in the Monte Carlo method. This suggests that 
v should be chosen large. However, it is not desirable to use a high-order Gauss 
formula since large errors may then arise if high-order partial derivatives of the 
function are large or if the function does not possess such derivatives. The high- 
order partial derivatives are large if the function has singularities in the 2k-dimen- 
sional complex domain near the region of integration. 

Similar arguments to those above may be applied to multidimensional integra- 
tion formulas obtained as the direct product of rules such as Simpson's rule, which 
gives an error that is 0 (N 4/k). They may in fact be applied to any case where 
the domain of integration is divided into smaller regions as above. 

In this connection the following two integration formulas should be mentioned. 

1 h h 

(i) 4 ] f(x) dxj ... dxk - (1 - k)f(O 0* *. 0) 

+ 1 ff(h, 02. . . * 0) + f( -h, 02 I O) + f(O, h, 02.O .*, O) 

+ f (0,- h, 0.. 0) + *(}+ O(h 4). 

h h 

(ii)(2h)k L f(x) dxl ... dxk = Uf(0, 0, ... , 0) 

+ 3.2k{f(h,h * ,, h) + f(-h, h, ,h) + f(h,-h, h, ,h) 
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Formula (i) requires (2k + 1) values of f(x) to estimate the integral over the 
hypercube of side 2h, and formula (ii) requires (2k + 1) values. However, if the 
hypercube 0 < xj < 1 is divided into nk smaller ones of side 2h then to evaluate 
I by using (i) requires (k + 1)nk + 0(n k1) values of f(x) and by using (ii) re- 
quires 2nk + 0(nk1) values. Simpson's rule used in this way requires (k + 2)nk + 

0(nk1 ) values. Thus, for fixed k the formulas (i) and (ii) and Simpson's rule give 
errors which are O(N -41k), but (ii) is the most efficient. 

In this paper we shall describe methods which give errors which are O(N-'), 
0(NF2), O(N3) and O(N 4) when applied in any number of dimensions to func- 
tions which satisfy appropriate conditions. The points xi at which the values of 
the function f(x) are required can be calculated by a computer more easily than 
the random numbers required for the Monte Carlo method. No coefficients, such 
as are required in the case of the Gauss-type methods, need be calculated, nor is it 
necessary to decide in advance the number of points to be used. 

In the following sections we first describe the methods as applied to the integra- 
tion of functions periodic in each of the variables. In Section 3 we describe calcula- 
tions leading to numerical estimates of some of the errors and to suitable sets of 
points xi at which to calculate the function. In Section 4 we describe the practical 
application of the methods to non-periodic functions, and in Section 5 we give an 
example. 

2. The Integration of Periodic Functions. 

2.1. General Theory. Let f(xi , X2, ... Xk) = f(x) be a periodic function with 
period 27r in each of the k variables xi , X2, * , Xk . We shall describe a number of 
methods for estimating the integral 

7 r 7r r 
I=(2ir)' L k jjX f(x) dxj dx2 ... dX. 

These estimates will be based on sums of the type 

( 1) s(N) = E CNmf(27rmlj , 27rmca2, *.. , 27rinak), 
m 

where the cai are certain linearly independent irrational numbers and the CNm are 
certain coefficients chosen so that s(N) -* I as N -> xo. We shall be particularly 
concerned with sets of coefficients cNm such that the number of non-zero coefficients 
in the sum (1) is finite and of order N. We shall give estimates for the difference 
s(N) - I in terms of N and of bounds for the derivatives of f(x). 

Certain formulas which are particularly simple to use are based on sums s(N) 
which can be expressed in terms of the repeated sums 

N 

S1(N) = 5E: f(2wrma) 
m=-N 

and 

Sr(N) = E Sr-i(m) 
m=O 
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where r > 2. The Sr(N) are modified Cesaro means of the sequence f(27rmo), terms 
with positive and negative m being taken together. We shall show that the means 

1 
s1(N) =2 + 1 S1(N) 

and 

s2(N) = 1 S2(N)X 
(N + 1)2 

which are of the form (1), give good estimates of I for large N. However, although 
for functions satisfying certain conditions the estimate for the error s2(N) - I is 
better than the estimate for si(N) - I, we find that the higher-order Cesaro means 
do not give better estimates of I. We shall show that if f(x) satisfies certain condi- 
tions then the means 

S3 (N) = ( )2(2N + 3) { S3(2N + 1) -2S3(N)} 

and 

s4(N) = + 4 {S4(2N) - 4S4(N-1) 
(N + 

give substantially improved estimates of the integral. Under these conditions we 
shall show that for large N, 

Sr(N) - I = O(NT) 

for r = 1, 2, 3 and 4. 
In the theory of the general method we are led to the consideration of the 

function 

kN(O) = CNme im 
m 

in terms of which we shall give estimates of the error. If for a particular set of 
coefficients CNm X 

|kN(O) I < Nsin4OK r 

for some fixed constant K = K(r) and for all N and 0, we shall say that the method 
has order r with constant K. For the sums si(N), s2(N), s3(N) and s4(N) the 
corresponding functions kN( 0) are 

k~P~o) - 
1 sin (N +)00 

(2N + 1) sin 20 

k(2) -) ( 1 sin -'(N + 1)6 
+ 1)2 Sjr2 10 

k(3) ( -1 sin2 '(N + 1)0 sin (N + ")0 Ic2 o) - (N + 1)2(2N + 3) sin2 2 
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and 

k(4)( - 1 sin4 F(N + 1)0 
(N + 1)4 sin4 20 

Hence these sums give methods of order 1, 2, 3 and 4 respectively. We shall prove 
that a method of order r gives an error which is O(NTr) provided that the inte- 
grand satisfies certain conditions. 

A method may have order r for several different values of r. In particular, if 
-in2 /2N2 

where the constant co is chosen so that 

E CNm = 1 
m 

it follows from the theory of elliptic modular functions that the method is of order 
r for all positive r. However, this method has certain disadvantages in practice. 

2.2. The Numbers ai. We shall now prove a lemma which will enable us to 
prove that there exist sets of irrational numbers cxi which may be used to obtain 
good estimates of integrals. This lemma is a standard result in the theory of Dio- 
phantine approximation but we include the proof here for completeness. The lemma 
also shows that for most sets of numbers a, the error is not substantially worse 
than in the estimates given. We show in Section. 3 how suitable sets of numbers 
ai may be found. 

We shall denote a set of integers (n1, n2, , nk) by n and we shall write the 
scalar product (nial + n2a2 + . + nkak) in the form n a. 

LEMMA. Let cp(n) be any positive function such that 

El /+(n) = 1. 
-x0 

Then there exist irrational numbers a, , ... cak such that 

(2) 4(nj)0(n2) * 
- 
* (nk)I ne -n ? < 1/(k + 1) 

for all sets of integers ni , n2 , ... , * nk , n not all zero. Further, the measure of the set 
of ac 2, *, ?k with O ? at < l such that 

(3) lbd (n1)0(n2) . (nk)I n -n ? < 6/(k + 1) 

is less than 6. 
We may suppose without loss of generality that 0 _ at < 1. We observe that 

for fixed n, n the measure of the set of a such that 

(4) 0(nj)0(n2) ... 
0(nk) ne - n ? </(k + 1) 

is less than or equal to 

a 1 1 
(k + 1) max \ nc q5(n1)cp(n2) ... *(nk) 

But n is a non-negative integer less than or equal to k max I . Hence the measure 
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of the set of a which satisfy (4) for given n and some n is less than or equal to 

b/4(nj)O(n2) ... (nk) 

Thus the measure of the set of a which satisfy (3) is less than 
00 

00 

00 E (nj)O(n2) . . . O(nk) 

(we have strict inequality since the regions overlap). Taking a = 1 we obtain the 
first part of the lemma. 

2.3. Estimates for the Error in the Integration of Periodic Functions. We now 
consider the problem of estimating the integral of a periodic function of k variables 
which can be represented by an absolutely convergent multiple Fourier series 

f(x) = E... E ann2...nke 
ni nk 

We shall suppose that for some positive fixed number s there exists a constant 
M8 such that if none of the ni = 0, 

(5) 1 anln2...fnk I < MA1 I nin2 .. nk| 

We suppose further that if any of the ni = 0 the same inequality holds with the 
zero factors omitted from the denominator on the right hand side. 

Since the Fourier series is absolutely convergent we may treat the contributions 
to the sum s(N) from the individual terms of the Fourier series separately. We 
obtain 

s(N) = ECNmf(27rma) 

- E *Z* * E anln2..lnkkN(2n a). 
nj nk 

Now ao,....,o = I, which is the integral which we wish to evaluate. We shall 
suppose that the coefficients CNm are scaled so that kN(O) = 1. Then 

(6) s(N) - I = E fanln2l...fnkIkN(27In a)) 

where the prime ' means that the term (0, 0, * * *, 0) is omitted. 
We suppose that the method is of order r so that there exists a constant K such 

that 

(7) | kN(O)I < KiNsin 21|r 

for all N and 0. Now 

I sin 7rt I > 2 Ii II 
where 11 I denotes the distance of t from the nearest integer. Thus if the numbers 
ai satisfy the condition (2) we have 

2sin7rn- I k 1 
- k + 1 4(nj)+(n2) ... 

* 
f(nk) 

Thus if we apply the bound for the Fourier coefficient and the condition (7) we 
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deduce that the contribution of the term ni, n2, * **, nk to the sum is less than 

KMA2-r(k + 1)r{j(ni)4(n2) . (nk)}T I n1n2 * nk I| N-r. 

We have supposed that we may drop any of the ni from the denominator if it 
is zero. If we suppose that the sum 

E: '1(n) Ir I n I - 

converges we deduce that there exists a constant Cr, depending only on r and s 
such that 

{ s(N) - I ? KM82r(k + lrCk N-h 

We have the bound 
00 

Cr8 j {0(0) } + Zi{(n)}r -s 

for the coefficients Crs, . If s > r + 1 we can choose an appropriate function o(n) 
which leads to a numerical bound for the error of the method. However, this bound 
for Crs is by no means the best possible and we shall show how it may be improved. 

We shall now prove the theorem. 
THEOREM. If the numbers a, , a2, ***, ak are chosen appropriately and if the 

function f(xi , X2 , * * * , Xk) is periodic with period 2r in each of the variables xi and 
its Fourier coefficients satisfy the condition (5) then if we apply any method of order 
r < s, where r > 1, with constant K there exist numbers Cr s such that 

(8) s(N) - I ? < KM82r(k + 1)rArsrk rNJr. 

The numbers Cr,8 depend only on the numbers ai and not on the particular method or 
the function to be integrated. 

If r = s it can be proved that I s(N) - I = O(Nr+) for E > 0, but we 
shall not give the proof here. 

In order to prove the theorem we suppose that the function 4(n) is chosen to 
be monotonic increasing for n ? 0 and such that 4(-n) = -(n). We divide the 
range of summation of the variables ni, n2, , nk into zones defined by 

Ni <ni < 2Ni 

(or if ni is negative - 2N < ni <- N ; zones for which some of the variables are 
zero are also allowed). Now if n' and n" are two sets of numbers in the same zone 
we deduce that j ni - ni I < Ni. Hence 

(n' -n") a || l/(k + 1)0(nl' - n")O(n2' - n2") ... c(nk' -nk") 

? 1/(k + 1)0(N1)0(N2) ... *(Nk) 

so that 

I 1 -11 n ? a 11 | 1/(k + 1)A(NT)0 (N2) * * .(Nk) 

We deduce that the number of sets of numbers n in the zone with 

1 n -a 11 < v/(k + 1)0(N1)0(N2) * * O(Nk) 
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is at most 2v + 2. Now for any set of numbers n, 

JJ n -a ? > 1/(k + 1)0(n1)0(n2) *(nk) 

so that the contribution of that set to the sum (6) is less than or equal to 

2-r(k + 1)"MKK{5(n1)p(n2) * -(nk)}r ' 
. nn2 ... nk I 8N-r. 

If we assume that {f(n) I' n I -8 decreases monotonically for n > 0 we deduce 
that the contribution of this term to the sum is less than 

2-r(k + l)rMJK{f,(N1)4,(N2) ...(0 )} ( N1N2 ... Nk I -sN-r. 

Thus, the sum of the contributions of all terms in the zone N. < ni _ 2Ni to the 
sum (6) is less than 

2-r(k + 1)rMrK{q (N,)(A(N2) * i (Nk)r 
N1 N2' - **Nk 

*N1N2 ... Nk I + 2 E V-r)N-r 

Similar results hold for those zones for which some of the ni are negative or zero. 
If s > r and r > 1 we may choose +5(n) so that the sum over all zones con- 

verges. We obtain the inequality 

js(N) -I I 
? 2-(k + X)rMsK{2v(r) + 2}({f(0)} I+ 2 5{74N)(N}r, T )kN-r 

where N1 runs through the powers of 2 and A(r) is the Riemann zeta function. 
This inequality is of the form (8) with Ar,s,k = {2?(r) + 2}. 

If r = 1 and s > 1 we obtain an expression with a different Cr,s and a coefficient 
Ar,s,k depending on s and k. 

These estimates for the errors are very crude but give some indication of the 

power of the methods. In the next section we shall describe how sets of numbers 

ai can be obtained and how numerical bounds for the errors in the estimates of the 
integrals can be calculated. 

3. Numerical Estimates for the Error. 

3.1. A Method for Obtaining Numerical Estimates. In this section we shall be 
especially concerned with the methods using the sums s2(N) and s4(N) to estimate 
the integral of a periodic function 

f (X) = f (X1, X2 *** Xk) = ~ z E 2 .. E l2nke 

Note that this function has period 2 in each of the variables xi . As before, we shall 
assume that the Fourier coefficients satisfy an inequality 

(9) Ial2 ..k< M I nin2 ... 
. n 

We shall be particularly concerned with the cases s = 2 and s = 4. In order to 
obtain a convenient form for the final results we shall replace zero factors in the 
denominator of the right-hand side of (9) by (6/Wr2) when s = 2 and by (360/77r4) 
when s = 4. 
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We recall that the functions kN( 6) for r = 2 and r = 4 take the form 

kf2(2) = (N 1 sin F(N + 1)0 
?1)2 sin2 , 

and 

ke4(4) 1 sin4 2(N + i)@ 
kN (N + 1)4 sin 4 16 

Both these functions are positive. 
Thus 

Sr(N) - I |= Z Zann2 ..,1k (i( rna) 

MZ E .Z nin2 ... k l k (7rn a). 

We now define the functions 

fs (x) = MsE* Z E nI n2 ... nk F 8e7ri(nX) 

k 0o 

= Ms* E i n -serinx3) 
j=1 n_-oo 

where MX* is chosen so that f8(O, 0, * - *, 0) = 1 and where, when n 0, the fac- 
tor n-s is replaced by the appropriate fraction for s = 2 or s = 4. 

By summation of the trigonometric series we deduce that 

f2(x) = Tti- xi )2} 

and 

f4(X) = IJ{2- (- I 
xi)2(1- Ixi1)2. 

ill 

We denote the values of the sums sr(N) corresponding to the functions f8(x) 
by sr,8(N), and the mean value of f8(x) over the periodic cell by Is . 

Then we deduce that 

I sr(N) - I } (M8/M,*) (sr,(N) - Is). 

Thus, we may say that the functions f2(x) and f4(x) are the worst functions for 
numerical integration whose coefficients satisfy the inequality (9) with s = 2 and 
s = 4. 

If, therefore, we find sets of numbers ai which make (srs(N) - Is) for a prac- 
tical range of N as small as possible, these ao will give good estimates for the in- 
tegral of any periodic function whose Fourier coefficients satisfy (9). 

3.2. The Determination of the ai. The Ferranti Mercury computer at Man- 
chester University was used to find good sets of ai for (r, s) = (2, 2) and (2, 4). 
This was done by minimizing the upper bounds of (N + 1 )2{ sr,,(N) - Is} for 
0 < N < N1. The minimization was performed by a random walk in the a-space, 
a step being taken only if it decreased the upper bound. The size of the step was 
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reduced when the upper bound could not be decreased otherwise and the number 
N1 was increased when the step was reduced. 

For s = 2, I = (3)k and for s = 4, Is = (_I75)k. In both cases 

f(0,0, ,0) = 1 

and f(x) > 0 for all x, so that SI(m) ? 1 and S2(N) > N + 1. Hence, for s = 2 
we have 

(N + 1)2{S22(N) - 12} ? (N + 1) - (N + 1)2(1)k. 

For a certain value Nm of N the right-hand side of this inequality approaches its 
maximum value of 1 3 k. Therefore, for values of N1 > Nm we cannot expect the 
upper bound lub (N + 1 )2{ s2,2(N) -12} t1o be less than 4 3k. The corresponding 
value for s = 4 is _ 1(5) 

It was found that the points a converged to points for which the upper bound 
was reasonably small. In Figure 1 the logarithms of the upper bounds for s = 2 
and s = 4 are plotted against k. For s = 2, N1 was taken up to 1500; for s = 4, 
up to 1000. The values -3k for s = 2 and I()k for s = 4 are shown on the same 
logarithmic graph as straight lines. The point for s = 2, k = 8 lies below the ap- 
propriate line; for this case N1 was less than the number Nm,. The numbers ai ob- 
tained for s = 2 and s = 4 are given in Tables 1 and 2 respectively. It should be 
realized that although these are good sets of ai they are not claimed to be the best 
possible. 

The convergence of the points a suggests that there may be limit points a' such 
that the bounds 

lub (N + 1)8{s,8(N) -Ij1 
O<N<oo 

4 - 

2 2_34_S6_78 _ 

0 

I ________________~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o___ 1 

k 

FIG. 1.-Errors associated with the numbers ai for (r, s) = (2, 2) and (2, 4). The points 
are the logarithms to base 10 of the computed errors and the lines are those below which, for 
large enough N, the points cannot be expected to fall. 
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TABLE 1 

Numbers ao for (r, s) = (2, 2) 

k= 1 k=5 k=7 
0.73258893 0.95734608 0.80638723 

k = 2 0.86730270 0.22584927 
0 _62055505 0.09724025 0.72510075 

0.62055505 0.31301950 0.51310685 
0.22610245 0.48476582 0.11080509 

k =3 k=60.60161858 
0.96498949 0.43657951 0 9215171 
0.81091316 0.59185199 k 8 
0.46960090 0.05024400 0.73750248 

k = 4 0.84373919 0.08314415 

0.62366851 0.38104000 0.84753682 
0.04150108 0.75808683 0.88989711 
0.48574769 0.80254484 
0.27210703 0.27951501 27210703 

~~~~~~~0.67340402 
0.53040927 

for these points are not substantially larger than the values given in the figure, but 
the author has not been able to prove this. 

In the case k = 1, r = 2, s = 4, however, he has been able to prove the following 
result. 

If, for some a, (N + 1)2{s2,4(N) - I41 for 0 < N _ N1 then there exists an 
irrational a' such that for all N 

(N + 1)2{s2,4(N) - I4 < 2B{1 + O(NT1"8)} 

and such that - a = O(N 

4. Application to the Integration of Non-Periodic Functions. We shall now show 
how the methods of Section 2 may be applied to obtain estimates of integrals of 
non-periodic functions of several variables. Suppose that it is required to evaluate 
the integral 

I =fft***...f F(xl, x2, **,xk) dx, dX2 ... dxk 

where R is some region of the k-dimensional space and F(x) is some given function. 
We shall show how under certain special circumstances it is possible to transform 
the problem to that of the integration of a periodic function. 

We have seen that we can obtain good estimates for the error in the integration 
of a periodic function if its Fourier coefficients tend to zero rapidly. Now, the 
Fourier coefficients tend to zero rapidly if the function is continuous and possesses 
partial derivatives of high orders. We shall, therefore, attempt to construct 
"smooth" periodic functions. The methods given below for doing this are intended 
only as examples. It will be apparent that each problem may require special treat- 
ment to obtain the best results. Also, if the function F(x) possesses unknown dis- 
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TABLE 2 
Numbers aifor (r, s) = (2, 4) 

k=1 k=5 k=7 

0.83969144 0.44810200 0.58505729 
k= 2 0.53589831 0.50196855 

k 0.56039410 0.77797734 
0.59734470 0.83630131 0.60504620 
0.92828094 0.22148205 0.62193588 

k = 3 k = 6 0.84244165 
0.64543976 

0.74235492 0.10613747 
0.57387033 0.40278232 k = 8 
0.32279917 0.88772556 0.23975940 

k = 4 0.43554826 0.01544979 

0.17665781 0.17219381 0.57794809 
0.71327190 0.63794472 0.81182909 
0.98875216 0.78068912 
0.60299793 0.62319488 

0.70710061 
0.60389317 

continuities, it will not be possible to remove these from the periodic function 
constructed. 

We first consider the integral 

I =ff | *f**.| F(x, x2, **,k) dxl dX2 ... dxk. 

This integral may be written in the form 

I = ff 111 f* F(lZ11, I Z21, I Zk l) dz1 dz2 ... dzk. 

The function f(z1 , z2, , Zk) = F( I z, I Z2 lk 1) may be regarded as a 
periodic function with period 2 in each of the variables zi . Then f is continuous if 
F is continuous, and if F possesses a derivative 

akF 

aX1 OX2 ... aXk 

of bounded variation it may be proved that the Fourier coefficients of f satisfy, 
for some M2, 

I anln2 l ...k < 112 1 nin2 ... nk | 

This implies that the means si(N) and s2(N) will give estimates for I with errors 
O(N-1) and 0(N -2+?) respectively. These methods have the particular advantage 
that since f(z) = f( - z) the means si(N) and S2(N) may be evaluated from the 
values of F at N + 1 points. The sum S1(N) may be expressed in the form 

N 

S1(N) = F(O, 0. , 0) + 2ZE F(2 Iflai}l , 'na *, 2 1{1 flk} ) 
n=1 



METHOD FOR NUMERICAL INTEGRATION 335 

where the brackets { } denote the fractional part, lying in the range (- 2, 2). For 
such a function the basic points of Table 1 are suitable. 

We now consider the application of higher-order methods to the integral 

= f'f' f F(zi , z2 .. Zk)dzldz2 dZk 

We make the substitution zi = Pr(xi) where r _ 1 and 

Pr(xi) - A. f (1 _ U2)T du 

and A r is chosen so that Pr (?1) = ?1. Then 

I 1* f * F(Pr (xi) * * Pr(Xic))Pr'(Xi) * Pr'(Xic) dxl dXk 

k f . 

L.f f(x1, x2, xk) dxj dx2 .. dxk 

say. Then f = 0 if any xi = ?1, and F is bounded. Thus if F is continuous f may 
be regarded as a continuous periodic function of the xi . If F possesses a partial 
derivative 

9krF 

((x1 dx2 ... * ) r 

of bounded variation then so will f. It is then possible to obtain an estimate 

Sr(N) - I = O(N-) 

so that the application of a method of order r will give an error of order N7 and 
the application of a method of order r + 1 will give an error of order N-l?E 

The numbers ai of Table 2 can be used to calculate the sums s2(N) when the 
partial derivative c3kf/(aXlaX2 * - * 3Xk)3 of the function has bounded variation. 

It is also possible to apply these methods to the more difficult problem of the 
evaluation of an integral taken over some more general regions. It is, of course, 
possible that there may exist some transformation of the variables which reduces 
the integral to periodic form. For example, in the evaluation of the integral of a 
function taken over the interior of a circle we may take polar coordinates. The 
function is then a periodic function of the angular variable. It may be made into 
a periodic function of the radius with derivatives of appropriate orders by one of 
the techniques above. 

In the case of the integration of a function F(x) over the infinite range (-s , Co) 
we may at once consider the periodic function 

ZF(x + 2irn) 
00 

but this may mean that we have to take a very large number of points if F(x) does 
not tend to zero rapidly as x -i + co. 

A more general method is the method of extrusion. Suppose that a region R with 
a smooth boundary is contained in a sphere S with center 0 in R. Then, if P is 



336 C. B. HASELGROVE 

any point in the sphere we may construct the line OP. If R is a star body about 0 
this line will meet the boundary in one point Q. We may then evaluate the function 
F at a point P' at a distance OP OQ/r from 0 along the line OP, where r is the 
radius of the sphere. If this value is multiplied by (OQ/r)k we obtain a function 
defined in the sphere which has the same integral over the sphere as F has over R. 

This process of extrusion may be generalized to the extrusion of any star body 
to any other star body containing it. It will generally be better to use a sphere 
rather than a cube if R has a smooth boundary, otherwise discontinuities are in- 
troduced into the derivatives. 

5. Exampleof Use. The method with the most practical application is probably 
that using the sum s2(N). The sum s4(N) may be more suitable if higher accuracy 
is required but for the results to be better than those for s2(N), the function f must 
have higher-order partial derivatives. 

The values of s2(N) can be calculated at chosen values of N while the repeated 
sum S2(N) is being accumulated. The accuracy of the results can be estimated by 
examining the convergence of the successive values of S2(N). 

A refinement may be introduced in order to decrease the rounding errors. The 
sum S2(N) becomes very large and for a floating point computer with a fixed 
number of significant figures the rounding error introduced at each addition is 
proportional to the larger of the two quantities added. Thus, the sum s2(N) will 
not be accurate to the full capacity of the computer. A method of overcoming this 
difficulty is to calculate an estimate In* = S2(N)/(N + 1)2 at intervals in the 
computation, and to subtract this value from each subsequent calculation of the 
integrand, so that the accumulated sums are 

N 

Sl*(N) = A, {f(ma) -I,*} 

and 
N 

S2*(N) = E Sl*(m). m=O 

TABLE 3 
Estimates for 1 f1 ... f10 e-xix2 x5 dx1 dx2 ... dx5 

N s2(N) si(N) F Monte Carlo 

1000 0.97062580 0.97062392 0.96763166 
2000 0.97063927 0.97082902 0.96870265 
3000 0.97066765 0.97054070 0.96885258 
4000 0.97066383 0.97068153 0.96944396 
5000 0.97065630 0.97065925 0.96950137 
6000 0.97065761 0.97061983 0.96990269 
7000 0.97065639 0.97068925 0.97018578 
8000 0.97065632 0.97064881 0.97030504 
9000 0.97065706 0.97063833 0.97038771 

10000 0.97065854 0.97066307 0.97032729 
11000 0.97065860 0.97065947 0.97029480 
12000 0.97065744 0.97067426 0.97048290 

Exact value = 0.97065719 
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The sum S2*(N) does not then become very large. At each successive re-estimate 
I+1 = I,* + S2*(N)/(N + 1)2 we replace the current S2*(N) by zero and the 

current S1*(N) by S1*(N) + (2N + l)(I* - I*+). The same method used in a 
fixed-point computer will reduce the amount of scaling necessary. 

As an example the integral 
1 1 1 

[ 10 10.. e-xx2.Xk dxl dx2 ... dxk 

was calculated on the Mercury computer. Some results for k = 5 are given in Table 
3. We give the sum s2(N) for N = 1000(1000) 12000. The method described above 
was used to reduce rounding errors, with the estimate In* calculated at every 10th 
value of N up to N = 100 and every 100th value thereafter. For comparison, the 
sum s1(N) is also given, and an estimate using the ordinary Monte Carlo method 
with N random sampling points. 
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